Table of Contents

<table>
<thead>
<tr>
<th>Service Procedure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>2</td>
</tr>
<tr>
<td>Tools</td>
<td>2</td>
</tr>
<tr>
<td>General Information</td>
<td>3</td>
</tr>
<tr>
<td>Sequence of Operation</td>
<td>10</td>
</tr>
<tr>
<td>Troubleshooting</td>
<td>13</td>
</tr>
<tr>
<td>Heating Element Testing</td>
<td>15</td>
</tr>
<tr>
<td>Line Voltage Testing</td>
<td>16</td>
</tr>
<tr>
<td>Fuse Testing</td>
<td>17</td>
</tr>
<tr>
<td>High Limit (ECO) Testing</td>
<td>18</td>
</tr>
<tr>
<td>Immersion Thermostat Operation Testing</td>
<td>19</td>
</tr>
<tr>
<td>Contactor Operation Testing</td>
<td>20</td>
</tr>
<tr>
<td>Immersion Thermostat Removal and Replacement</td>
<td>21</td>
</tr>
<tr>
<td>High Limit (ECO) Removal and Replacement</td>
<td>22</td>
</tr>
<tr>
<td>Heating Element Removal and Replacement</td>
<td>23</td>
</tr>
<tr>
<td>Anode Inspection and Replacement</td>
<td>24</td>
</tr>
<tr>
<td>Generic Parts List</td>
<td>25</td>
</tr>
<tr>
<td>Glossary of Terms</td>
<td>26</td>
</tr>
</tbody>
</table>

Introduction

This service manual is designed to aid service and maintenance professionals on the function, proper diagnosis and repair of Bradford White Commercial Electric Water Heaters.

The text and illustrations in this manual provide step-by-step instructions to facilitate proper operation and troubleshooting procedures. Contact the Bradford White Technical Support Group immediately if diagnosis cannot be made using the methods described in this service manual.

Tools

- Multi Meter.
- 2-1/8" Deep Well Socket.
- 1-1/16" Deep Well Socket.
- ¼" Nut Driver.

- Phillips Head Screw Driver.
- Common Screw driver.
- Thermometer.
- Drain Hose.

Model Number Breakdown

120A - 24 - 3 - 108B - BBG

- Pressure Gage Option.
- Control Circuit Option Code.
 - Any combination of the following optional controls:
 - Heating Element Time Delay Sequencing.
 - Low Water Power Interrupt.
 - Panel Door Interlock
 - High Pressure Power Interrupt
 - Low Pressure Power Interrupt
 - Alarm Horn
 - NOTE: Code “AA” denotes no optional controls used.
- Power Circuit Code.
 - Voltage
 - kW Rating
 - Phase
 - Amp Rating

Warranty

kw Rating

Tank

Typical Rating Plate
Located On Front Of Water Heater

BRADFORD WHITE CORPORATION
200 LAFAYETTE ST. MIDDLEVILLE MI 49333
Model No: 120A-24-3-108B-BBG
Serial No: ZB2564812
Cap. 120(gal.)/454.2(liters)
Press: Test 300(psi), Working 150(psi)

Volts 240 Max Temp 180°
Phase Single Amps 100
kW Each 6 Total kW 24 4 Elements
Wattage Rating Based Upon 60 Hz

In the Field, this information is obtained from the heaters rating plate

Model Number

Electrical Characteristics

Version: 1
General Controls Layout

Contactor
Contactor operation is achieved by energizing a 120 volt operating coil located within the contactor in response to a call for heat from the immersion thermostat. Upon a call for heat, one or more contactors will energize all heating elements simultaneously. Optionally, time delay sequencers may be used to stage contactor activation thereby reducing the inrush of current to the water heater.
Standard Controls (continued)

Immersion Style Thermostat Control

The thermostat will complete control circuit voltage upon a call for heat. Likewise, the control will interrupt control circuit voltage when the water temperature is sufficient to satisfy the adjustable temperature limit of control.

Immersion Style High Limit (ECO) Control for Contactor Models

The high limit (ECO) control will interrupt control circuit voltage causing the heater to shut down when the high temperature limit of the control is reached (196°F±4°F). Once the cause for over heated water has been determined, The control must be manually reset to restore normal operation.
Optional Controls

Certain control components are available as “Optional”. When these optional components are installed with the water heater, the control circuit wiring diagram accordingly will include these components. The optional equipment available from the manufacturer includes the following:

- High Water Pressure Switch
- Low Water Pressure Switch
- Low Water Level Switch
- Heating Element Time Delay Sequencers
- Electrical Door Lock
- Alarm Horn

High and Low Water Pressure Controls-
These controls interrupt the electrical current to the contactor coil when the pressure settings are exceeded. The operation and setting of these controls are described in the manual provided by the control manufacturer. This manual is included with the water heater installation and Operating Instruction manual provided with the water heater.

The pressure settings for these controls are adjustable. These controls are specified for use when the installation has unique pressure requirements that must be safeguarded. Therefore, before adjusting the pressure values, it is recommended that you consult the person responsible for the facility that the water heater is servicing.

The electrical connections are referenced in the Control Circuit Wiring Diagram and in the pressure control manual provided by the control manufacturer. Refer to these instructions when servicing the controls.
Optional Controls (continued)

Low Water Level Control-
This control will interrupt the electrical current to the contactor coil when a low water level condition is sensed inside the water heater tank. When the low water level condition is corrected the control will automatically sense the new situation and electrical current will again energize the contactor coil. Normal water heater operation will be resumed.

To remove the low water level control from the tank you must first loosen the control by un-threading it from the tank fitting and then rotating the control until the arrow printed on the side of the hex fitting is pointing downward. This will enable the float orientation to align itself with the opening in the tank-fitting.

When installed, refer to the direction of the arrow on the hex and insure that it is pointing upwards. If it is not pointing upward, the control switch will not activate when the tank is refilled with water. Refer to illustration below for clarification.

Heating Element Time Delay Sequencers-
Heating element sequencers are available in order to stage the activation of the heating elements thereby, reducing the inrush of electrical current to the water heater. The sequencers will control one or more contactor coils depending upon the water heater voltage, phase, and KW.

One contactor will be energized immediately when there is heating demand, the second contactor, controlled with a sequencer, will be activated approximately 20 seconds later, and the third contactor will be activated in another 20 seconds thereby, staging the three contactors over the 40 second time period. The staging occurs in a similar manner for applications having more than three contactors.

Refer to the Control Circuit Wiring Diagram for the specific application being serviced.

Note: On the occasion of servicing the water heater where frequent restarts in a short time interval are encountered (i.e. on, off, on, etc.), the timing sequences will not begin until the sequencers have experienced a time interval to reset.
Optional Controls (continued)

Electrical Door lock-
An electrical door lock is offered in order to secure the access to the water heater control cabinet. This device will lock the control cabinet door when the 120VAC control circuit voltage is applied to it.

Note: Once the door is opened, the water heater can be re-energized, if necessary, for service diagnosis.

Alarm Horn-
The Alarm Horn is an option specified when the installation desires an audible signal to immediately sound an alert when the water heater operation is interrupted for certain faults. Referring to the control circuit wiring diagram, the alarm will activate when any one of the following events occur:

- The Hi-Limit control has been tripped
- The High Water Pressure Control senses excessive pressure
- The Low Water Pressure Control senses insufficient pressure
- The Low Water Level Control senses an insufficient quantity of water

The alarm will sound only for the options specified (i.e. if a low water level control is not specified then the alarm will not recognize a low water level condition).

Combination Temperature and Pressure Gage-
A non-electrical device to visually reference water temperature and internal tank pressure.
Commonly Used Formulas

(Single phase) \(\text{Amps} = \frac{\text{Watts}}{\text{Volts}} \)

(balanced 3 phase) \(\text{Amps} = \frac{\text{Watts}}{\text{Volts} \times 1.732} \)

\(\text{Watts} = \text{Amps} \times \text{Volts} \)

\(\text{Ohms} = \frac{\text{Volts}^2}{\text{Watts}} \)

Common Service Wire Configurations

240V 1Ph

- BLACK Ungrounded
- GREEN Grounding
- RED Ungrounded

208 3Ph

- Neutral
- A
- B
- C

- 208

240 3Ph

- Neutral
- A
- B
- C

- 240

480 3Ph/277 1Ph

- Neutral
- A
- B
- C

- 277

Full Load Current Amps

<table>
<thead>
<tr>
<th>kW</th>
<th>208 Volt 1 Ph</th>
<th>240 Volt 1 Ph</th>
<th>277 Volt 1 Ph</th>
<th>380 Volt 3 Ph</th>
<th>415 Volt 3 Ph</th>
<th>480 Volt 3 Ph</th>
<th>600 Volt 3 Ph</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>14.4</td>
<td>12.5</td>
<td>10.8</td>
<td>6.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>28.8</td>
<td>25.0</td>
<td>21.6</td>
<td>16.7</td>
<td>13.6</td>
<td>12.5</td>
<td>7.2</td>
</tr>
<tr>
<td>9</td>
<td>43.2</td>
<td>37.2</td>
<td>32.4</td>
<td>27.3</td>
<td>23.1</td>
<td>20.5</td>
<td>14.4</td>
</tr>
<tr>
<td>12</td>
<td>57.6</td>
<td>50.0</td>
<td>43.3</td>
<td>36.4</td>
<td>33.4</td>
<td>28.1</td>
<td>18.2</td>
</tr>
<tr>
<td>13.5</td>
<td>64.9</td>
<td>56.2</td>
<td>48.7</td>
<td>41.0</td>
<td>37.5</td>
<td>28.1</td>
<td>18.2</td>
</tr>
<tr>
<td>15</td>
<td>72.1</td>
<td>62.5</td>
<td>54.1</td>
<td>47.3</td>
<td>40.7</td>
<td>30.9</td>
<td>20.2</td>
</tr>
<tr>
<td>18</td>
<td>86.5</td>
<td>75.0</td>
<td>64.9</td>
<td>57.3</td>
<td>50.1</td>
<td>40.7</td>
<td>28.1</td>
</tr>
<tr>
<td>24</td>
<td>115.4</td>
<td>100.0</td>
<td>86.6</td>
<td>76.4</td>
<td>66.4</td>
<td>50.1</td>
<td>37.5</td>
</tr>
<tr>
<td>27</td>
<td>129.8</td>
<td>112.5</td>
<td>97.4</td>
<td>87.4</td>
<td>76.4</td>
<td>66.4</td>
<td>50.1</td>
</tr>
<tr>
<td>30</td>
<td>144.2</td>
<td>125.0</td>
<td>108.3</td>
<td>98.3</td>
<td>88.4</td>
<td>76.4</td>
<td>66.4</td>
</tr>
<tr>
<td>36</td>
<td>173.0</td>
<td>150.0</td>
<td>129.9</td>
<td>119.9</td>
<td>109.3</td>
<td>98.3</td>
<td>88.4</td>
</tr>
<tr>
<td>45</td>
<td>216.3</td>
<td>187.5</td>
<td>162.4</td>
<td>142.4</td>
<td>129.9</td>
<td>119.9</td>
<td>109.3</td>
</tr>
<tr>
<td>54</td>
<td>259.6</td>
<td>225.0</td>
<td>194.9</td>
<td>174.9</td>
<td>159.4</td>
<td>142.4</td>
<td>129.9</td>
</tr>
<tr>
<td>81</td>
<td>389.4</td>
<td>337.5</td>
<td>292.4</td>
<td>252.4</td>
<td>227.5</td>
<td>202.5</td>
<td>179.5</td>
</tr>
</tbody>
</table>
This water heater has two distinct electrical systems. One system, referred to as the "Control Circuit", controls the water heater operation, while the other system referred to as the "Power Circuit", connects the electrical power to the heating elements. The electrical contactors interconnect these two systems. In order to clearly illustrate the electrical circuits, two wiring diagrams are provided. These diagrams are labeled as the "Control Circuit Wiring Diagram" and the "Power Circuit Wiring Diagram" and they are attached to the surface of the panels inside the water heater control cabinet.

Control Circuit Description-
The control circuit operates with 120VAC electrical service. This voltage is provided by the multi-tap transformer which has the primary coil connected to the field wiring that is serving the water heater. The Transformer, Thermostat, Hi-Limit control, and the Contactor Coil are always included in the Control Circuit.

Certain other control components are available as "Optional". When these optional components are installed with the water heater, the control circuit wiring diagram accordingly will include these components. The optional equipment available from the manufacturer includes the following:

- High Water Pressure Switch
- Low Water Pressure Switch
- Low Water Level Switch
- Alarm Horn
- Heating Element Sequencers
- Electrical Door Lock

Control Circuit Sequence of Operation-

NOTE: To help understand the concept of the operating sequence, the control circuit shown is without any optional controls. See page 11 For control circuit showing all available optional controls.

1. Line voltage is applied to control circuit fuse block.

2. Line voltage continues to transformer with one leg of voltage connecting to the common terminal and the other leg connecting to the appropriate line voltage multi-tap terminal. Transformer output (always 120 volts) continues to high limit (ECO) control.

3. Hi limit (ECO) control is closed so one leg of 120 volts continues to one side of the contactor coil. The other leg is connected to the thermostat.

4. When the thermostat calls for heat, contacts close inside the thermostat completing the circuit and energizing the contactor coil.

5. The energized contactor coil causes the contactor to close energizing the heating elements.

6. When the temperature setting of the thermostat is reached, the contacts in the thermostat open. This interrupts current flow through the control circuit de-energizing the contactor coil.

7. The de-energized contactor coil causes the contactor to open, interrupting current flow through the Heating elements.
Control Circuit Sequence (Continued)-

Certain other control components are available as “Optional”. These controls are specified when the installation has unique requirements that must be safeguarded. When these optional components are installed the control circuit wiring diagram accordingly will include these components. The optional equipment available from the manufacturer includes the following:

- High Water Pressure Switch
- Low Water Pressure Switch
- Low Water Level Switch
- Alarm Horn
- Heating Element Sequencers
- Electrical Door Lock

Control Circuit Sequence of Operation with Optional Controls

Same as explained on page 10 with the following exceptions:

- **Hi and Low Pressure Switch** and **Low Water Level Switch** when specified are always wired in series ahead of the Hi-limit control.

- **Heating Element Sequencers** are wired in series with contactor coils staging contactor activation at intervals of approximately 20 seconds.

- **Alarm Horn** is wired in series ahead of the thermostat. It monitors only the Hi and Low pressure switch, Low water level Switch and the hi-limit (ECO). If either of these switches open, power to the horn relay is interrupted causing the relay to close sounding the alarm horn.

- **Electrical Door Lock** is wired in parallel to secure the access to the water heater control cabinet. This device will lock the control cabinet door when the 120VAC control circuit voltage is applied. Once the door is opened, the water heater can be re-energized, if necessary, for service diagnosis.

Control Circuit Wire Diagram Showing Optional Controls
Power Circuit Description

The Power Circuit Wiring Diagram illustrates the electrical connections from the incoming power supply through the contactors to the heating elements. The power circuits are available with internal circuit fusing and without internal circuit fusing.

As it would be impractical to show all wired configurations in this service manual, a reference wiring diagram is illustrated below to aid in the understanding of the power circuit operating sequence. Service providers must refer to the water heaters power circuit wiring diagram attached to the inside panel of the control cabinet for the specific connections of the water heater being serviced.

The power circuit components and supporting information that appear on the wiring diagram include the following:

- Field wiring connection via terminal block or other connection point
- Fuse block with amperage ratings displayed (when provided)
- Contactors with amperage ratings displayed
- Electrical elements with voltage and wattage ratings displayed
- Water heaters total amperage draw is displayed

Power Circuit Sequence

1. Line voltage is applied across terminals of fuse block or a terminal block. Line voltage continues down and connects to terminals L1, L2 & L3 of one or more contactors.

 A) Contactor is open (no call for heat), so there is no voltage across terminal T1, T2 & T3 of contactor.

 B) The contactor is controlled by the control circuit as explained on pages 10 & 11.

2. The control circuit senses a call for heat and energizes the operating coil within the contactor.

3. The energized contactor coil causes the contactor to close energizing the elements from terminals T1, T2 & T3 of the contactor.

4. When the temperature setting of the thermostat is reached, the contacts in the thermostat open. This interrupts current flow through the control circuit de-energizing the contactor coil.

5. The de-energized contactor coil causes the contactor to open, interrupting current flow through the elements.
Most common cause for improper electric water heater operation can be linked to heating element failure.

When troubleshooting an electric water heater with the incidence of “No Hot Water” or “Insufficient Amount of Hot Water” it is always a good idea to check the heating elements first following the procedure on page 15.

Common Heating Element Failures Are:

1. **Dry Firing.** Elements may be partially submerged in water or most likely, completely exposed with no water in the tank at all. In open air, an energized element *(Dry Fired)* will become completely inoperable within seconds. In some cases sediment or lime build up around an element can eventually cause an air pocket, resulting in a dry fired element. When element replacement is required, be sure tank is full of water prior to energizing the water heater.

2. **Grounded Element.** In most cases, an element with a short circuit to ground will cause the circuit breaker in the service panel to open or shut off. In some cases there may not be enough current draw for the circuit breaker to open. This will allow the heating element to be in continuous operation resulting in over heated water, limited only by the hi-limit (ECO) located in the control circuit. Repeated actuation of the hi-limit usually is the result of a grounded heating element.

3. **Sediment build up.** Slow hot water recovery can usually be traced back to sediment or lime build up around heating element. Sediment build up can also over time cause a dry fired element.

If an heating element is found to be inoperative, it must be replaced. Follow service procedure **ACE-IX** on page 23.

The illustration below shows a common “Screw-In” type heating element identifying certain features commonly referred to throughout this manual.
Quick Step Plan to Hot Water

1. **STOP, DANGER!** Turn power “OFF” to water heater.
2. Check all wire connections to insure they are snug and corrosion free.
3. Reset high limit (ECO) (page 18).
4. Check for inoperative heating element (page 15).
5. Check line voltage (pg 16), and internal fuses (page 17).
6. Refer to table below if items 1 through 5 above do not correct problem.

TROUBLESHOOTING

WARNING

High voltage exposure. Use caution when making voltage checks to avoid hazard to life or property.

#### SYMPTOM	PROBABLE CAUSE	CORRECTIVE ACTION	SERVICE PROCEDURE
Noisy (singing or hissing) Elements | 1. Lime formation on elements. 2. High or low line voltage. | 1. Clean or replace heating elements. 2. Verify line voltage to heater. | 1. ACE-I, Page 23. 2. ACE-II, Page 16.
Noisy Contactor | 1. Low line voltage. 2. Debris between contactor plates. 3. Incorrect or defective operating coil. 4. Loose wire connections. | 1. Verify line voltage to heater. 2. Replace contactor. 3. Replace contactor. 4. Check wire connections. | 1. ACE-II, Page 16.
Test for Open or Burned Out Element.

1. STOP, DANGER! Turn power “OFF” to water heater.
2. Open control panel access door.
3. Disconnect wires from heating element.
4. Set multi-meter to “ohms” setting.
5. Touch probes of multi-meter to screw terminals of heating element (see illustration 1).
6. Reading should be 12.8 ohms (±6%) for a 240 volt, 4500 watt element, see table below for other elements.

\[
\text{Ohms} = \frac{\text{Volts}^2}{\text{Watts}}
\]

A reading outside the range using the formula above (±6%), indicates a bad element and the element must be replaced.

Test For Grounded Heating Element (damaged heating element with short circuit to ground).

1. STOP, DANGER! Turn power “OFF” to water heater.
2. Open control panel access door.
3. Disconnect wires from heating element.
4. Set multi-meter to “ohms” setting.
5. Touch one probe of multi-meter to either screw terminal of heating element and the other on the element flange (see illustration 2). There should be no reading on the ohm meter. Any reading indicates a grounded element and the element must be replaced. Repeat this step for the other screw terminal.
Line Voltage Testing

Line voltage (single phase or three phase) will connect to a terminal block or directly to a fuse block located inside control panel.

Determine heaters voltage and phase by referring to the rating plate located on the front of the heater. Apply the appropriate phase procedure below to determine if proper line voltage is present.

Single Phase Line Voltage Testing

1. STOP, DANGER! Turn power “OFF” to water heater.
2. Open control panel door.
3. Determine connection point for line voltage from service panel, *terminal block* or *fuse block*.
4. Set multi-meter to volts AC. Be sure to scale meter for appropriate voltage.
5. Use caution and turn power “ON” to water heater.
6. Use caution and check voltage across top terminals where service voltage connects to water heater. (see illustration 3).
 - A) Rated voltage IS present, power to the water heater is okay.
 - B) Rated voltage NOT present, Check service panel.

Three Phase Line Voltage Testing

1. STOP, DANGER! Turn power “OFF” to water heater.
2. Open control panel door.
3. Determine connection point for line voltage from service panel, *terminal block* or *fuse block*.
4. Set multi-meter to volts AC. Be sure to scale meter for appropriate voltage.
5. Use caution and turn power “ON” to water heater.
6. Use caution and check voltage across top terminals where service voltage connects to water heater. (see illustration 4).
 - A) Rated voltage IS present, power to the water heater is okay.
 - B) Rated voltage NOT present, Check service panel.

DANGER

High voltage exposure. To avoid hazard to life or property use extreme caution when making voltage checks.

Illustration 3

Illustration 4
Fuse Testing

1. **STOP, DANGER! Turn power “OFF” to water heater.**

2. Open control panel door to allow access to fuse block.

3. Locate fuse block and remove fuses.

4. Set multi-meter to the “Ohms” setting.

5. Check continuity across fuse (see illustration 5).

 A) Continuity IS present, fuse is okay.

 B) Continuity NOT present, Replace with new fuse

DANGER

High voltage exposure. To avoid hazard to Life or property, be sure power is turned OFF to water heater while performing this procedure.
High Limit Control (ECO) Operation

Switch Contacts:
- Normally closed.
- Open on rise @ 196°F ±4°F
- Manual Reset.

1. Determine if Hi-Limit has actuated. This can be done by simply depressing the reset buttons. If you hear and/or feel a small click, the switch has actuated.

2. Use caution and turn power on to water heater and observe heating cycle following the Hi-Limit Heating Cycle flow chart.

High Limit Heating Cycle Flow Chart

DANGER
High voltage exposure. To avoid hazard to Life or property, be sure power is turned OFF to water heater while performing this procedure.

High Limit Control Continuity Testing

1. **STOP, DANGER!** Turn power “OFF” to water heater.
2. Water temperature must be below 196°F ±4°F
3. Remove Hi-Limit switch from control panel. It is not necessary to remove immersion bulb from tank at this time. See general controls layout on page 4 for location.
4. Disconnect wire leads to Hi-Limit Control.
5. Depress reset buttons to insure switch contacts are closed.
6. Set multi-meter to Ohms setting. Check continuity Thru circuit A & B as shown in the illustrations below.
 - Continuity **IS** present, Switch is okay.
 - Continuity **NOT** present, Replace switch.

NOTE
Disconnect Wire Leads to Control

Circuit “A” Continuity Testing

Circuit “B” Continuity Testing
Immersion Thermostat Operation Testing

Thermostat Specification:
Calibration: 184°F/176°F
Max Differential: 6°F
Operating Range 80 to 180°F

Providing the water temperature in tank is within the operating range of the thermostat, checking thermostat operation can be as simple as rotating the thermostat dial and listening to the contactor(s) to see if they respond to a call for heat.

Use caution and turn Power "ON" and rotate the thermostat dial to call for heat. With water temperature below the thermostat setting, the contactor(s) close. With the contacts closed, use caution and check for rated voltage across lower terminals of contactor(s) (see illustration 10). If rated voltage is present, the thermostat is calling for heat.

Rotate thermostat dial to the minimum setting. With water temperature above the thermostat setting the contactor(s) will open. With the contacts open, voltage should not be present at lower terminals of contactor(s).

Follow the procedure below if preliminary testing above does not verify thermostat operation.

Thermostat Control Continuity Testing.

1. This procedure assumes line voltage, ECO and contactor(s) are in working order.

2. STOP, DANGER! Turn power “OFF” to water heater.

3. Open control panel door.

4. Locate thermostat control (see general controls layout on page 4) and remove wire leads to control screw terminals.

5. Water temperature in tank must be within operating range of thermostat for this test. If above or below, it will be necessary to drain tank and remove thermostat immersion bulb from tank to warm or cool the bulb to be within operating range of thermostat.

6. Set multi-meter to the “Ohms” setting.

7. Rotate thermostat dial to highest setting.

8. Check across screw terminals of control (see illustration 7).
 A) Continuity IS present, okay.
 Go to step 9.
 B) Continuity NOT present, replace thermostat.

9. Rotate thermostat dial to lowest setting.

10. Check across screw terminals of control (see illustration 7).
 A) Continuity NOT present, thermostat is okay.
 B) Continuity IS present, replace thermostat.

DANGER

High voltage exposure. To avoid hazard to life or property use extreme caution when making voltage checks.

NOTE: Disconnect Wire Leads to Control Screw Terminals
CONTRACTOR TESTING

Noisy Contactor

Noisy or chattering contactor operation in most cases is due to voltage variations being supplied to the water heater. Extended periods of voltage variations will cause damage to the operating coil of the contactor causing noisy operation. Determine that service voltage to the unit meets the electrical requirements per the rating plate located on the front of the water heater, see page 16.

In addition, debris between the contact plates will cause noisy operation.

CONTRACTOR OPERATION TESTING

This procedure assumes control circuit is operating correctly.

Providing the water temperature in tank is within the operating range of the thermostat, checking contactor operation can be as simple as rotating the thermostat dial and listening to the contactor(s) to see if they respond to a call for heat.

1. Turn Power "ON" and rotate thermostat dial to the maximum setting, with water temperature in tank below the thermostat setting, the contactor(s) will close. With the contacts closed, check for 120 volts across operating coil terminals (see illustration 8).

 A) 120 volts IS present, okay, go to step 2.
 B) 120 volts NOT present, verify control circuit operation.

2. Check for rated voltage across lower terminals of contactor(s) (see illustration 9).

 A) Rated voltage IS present, okay, go to step 3.
 B) Rated voltage NOT present, replace contactor.

3. Rotate thermostat dial to the minimum setting. With water temperature in tank above thermostat setting, the contactor(s) will open. With the contacts open, voltage should not be present at lower terminals of contactor(s).

4. Check for 120 volts across operating coil terminals (see illustration 8).

 A) 120 volts IS present, verify control circuit operation.
 B) 120 volts NOT present, okay go to step 5.

5. Check for rated voltage across lower terminals of contactor(s) (see illustration 9).

 A) Rated voltage IS present, replace contactor.
 B) Rated voltage NOT present, contactor is okay.

DANGER

High voltage exposure. To avoid hazard to life or property, use extreme caution when making voltage checks.

Contactor Operating Coil

Contactor operation is achieved by energizing an operating coil located within the contactor. The contactor coil is considered part of the control circuit operating at 120 volts as described on page 10.

Illustration 8

Illustration 9
Immersion Thermostat Removal

1. **STOP, DANGER!** Turn power "OFF" to water heater.
2. Open control box door.
3. Turn off cold water supply to heater. Connect hose to drain spigot of water heater and route to an open drain. Open a nearby hot water faucet to vent heater for draining. Open drain spigot of water heater and allow heater to drain to a point below the Immersion bulb location (see illustration 10 for location).
4. Close drain spigot and remove hose.
5. Locate thermostat control inside lower control box mounted to the right inside surface of the control box. (see illustration 10).
6. Follow copper capillary tube from thermostat control to the immersion bulb location and remove immersion bulb from tank, 11/16” wrench.
7. Remove (pull) thermostat dial from stem of thermostat control.
8. Remove the two control mounting screws and remove thermostat control from control panel.
9. Disconnect wire leads to the thermostat control. NOTE: It may be necessary to identify wires for proper reconnection to new thermostat.

Immersion Thermostat Replacement

10. Refer to control circuit wire diagram and properly reconnect wire leads to new thermostat control and install new control inside control box using screws from step 8.
11. Replace control dial to stem of thermostat.
12. Loosen ferrule nut of immersion bulb. (see illustration 11)
13. Position tank nut at end of immersion bulb as shown in illustration 11. Insert immersion bulb into tank and tighten tank nut.
14. Gently pull copper capillary tube to insure the immersion bulb is in a horizontal position as shown in illustration 11 and tighten ferrule nut.
15. Resume water supply, fill tank and check for leaks.
16. Be sure tank is full or water and resume power supply to water heater. Verify proper thermostat operation.

Service Procedure ACE-VII

Danger

High voltage exposure. To avoid hazard to life or property, be sure power is turned OFF to water heater while performing this procedure.
High Limit Control (ECO) Removal

1. **STOP, DANGER!** Turn power “OFF” to water heater.
2. Open control box door.
3. Turn off cold water supply to heater. Connect hose to drain spigot of water heater and route to an open drain. Open a nearby hot water faucet to vent heater for draining. Open drain spigot of water heater and allow heater to drain to a point below the Immersion bulb location (see illustration 12).
4. Close drain spigot and remove hose.
5. Locate hi-limit control inside lower control box mounted to the right inside surface of control box (see illustration 12).
6. Follow copper capillary tube from control to the immersion bulb location and remove immersion bulb from tank, 11/16” wrench.
7. Remove the two control mounting screws located outside the control box.
8. Disconnect wire leads to the control. NOTE: It may be necessary to identify wires for proper reconnection to new control.

High Limit Control (ECO) Replacement

9. Refer to control circuit wiring diagram located on the inside of the control box and properly reconnect wire leads to new control and install new control inside control box using screws from step 7.
10. Loosen ferrule nut of immersion bulb. (see illustration 13)
11. Position tank nut at end of immersion bulb as shown in illustration 13. Insert immersion bulb into tank and tighten tank nut.
12. Gently pull copper capillary tube to insure the immersion bulb is in a horizontal position as shown in illustration 13 and tighten ferrule nut.
13. Resume water supply, fill tank and check for leaks.
14. Be sure tank is full of water and resume power supply to water heater. Verify proper high limit operation.

DANGER
High voltage exposure. To avoid hazard to Life or property, be sure power is turned OFF to water heater while performing this procedure.
Heating Element Removal

1. **STOP, DANGER!** Turn power “OFF” to water heater.
2. Open control box door.
3. Turn off cold water supply to heater. Connect hose to drain spigot of water heater and route to an open drain. Open a nearby hot water faucet to vent heater for draining. Open drain spigot of water heater and allow heater to drain to a point below the heating element(s).
4. Close drain spigot and remove hose.
5. Disconnect wires from heating element terminals.
6. Remove heating element from tank using 2-1/8” deep well socket or appropriate wrench. Unscrew element counter-clockwise to remove from tank.
7. Be sure to remove old element gasket from the tank. It is not recommended to be re-used.

Heating Element Replacement

1. Check new heating element terminal block for proper electrical rating. **NOTE:** Some heating elements have dual ratings, be sure to check all surfaces of the heating element terminal block (see illustration 14).
2. Apply new gasket to the new heating element. Be sure gasket is seated flat against heating element flange without rolls or gaps (see illustration 14).
3. Clean any debris from tank fitting where heating element is to be installed. Lubricate heating element threads as needed with thread lubricant.
4. Thread new heating element clockwise into tank fitting. Tighten heating element using 2-1/8” deep well socket or appropriate wrench. Do not over tighten, over tightening may damage gasket.
5. Reconnect wires to heating element, be sure connections are snug and corrosion free. Do not over tighten, doing so may damage terminal block.
6. Resume water supply to heater, be sure tank is full of water and check for leaks.
7. To resume operation, **BE SURE TANK IS FULL OF WATER** and restore power to water heater. Verify proper heater operation.

WARNING

Heater components and stored water may be **HOT** when performing the following steps in this procedure. Take necessary precaution to prevent personal injury.

DANGER

High voltage exposure. To avoid hazard to Life or property, be sure power is turned OFF to water heater while performing this procedure.
SERVICE PROCEDURE ACE-X
Anode Inspection and Replacement

Anode Inspection and Replacement

WARNING
Heater components and stored water may be **HOT** when performing the following steps in this procedure. Take necessary precaution to prevent personal injury.

DANGER
High voltage exposure. To avoid hazard to Life or property, be sure power is turned OFF to water heater while performing this procedure.

1. **STOP, DANGER!** Turn power “OFF” to water heater.

2. Turn off cold water supply to heater. Connect hose to drain spigot of water heater and route to an open drain. Open a nearby hot water faucet to vent heater for draining. Open drain spigot of water heater and allow heater to drain to a point below the anode locations at the top of the tank.

3. Close drain spigot and remove hose.

4. Remove the plastic anode access plugs at the anode locations.

5. Remove anode from the water heater (1-1/16” socket).

6. Visually inspect anode. Anode should show signs of depletion, this is normal. If depletion is ½ of the original anode diameter (original diameter approximately ¾”), replacement is recommended. If any of the steel core of the anode is exposed, replacement is recommended.

7. Upon completion of inspection or subsequent replacement, reinstall anode into heater. Resume water supply, refill heater with water and check for leaks.

8. To resume operation, **BE SURE HEATER IS FULL OF WATER** and turn power “ON” to water heater.

![Anode Rod Location for all models](image-url)

Second anode location
For models having two anodes (50A, 80A, 120A).
<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>T&P Relief Valve.</td>
<td>31</td>
<td>Low Water Switch (optional).</td>
</tr>
<tr>
<td>2</td>
<td>Nipple Plastisert.</td>
<td>32</td>
<td>Electrical Door Lock (optional).</td>
</tr>
<tr>
<td>3</td>
<td>Hot Water Outlet Nipple.</td>
<td>33</td>
<td>Control Box Door.</td>
</tr>
<tr>
<td>4</td>
<td>Magnesium Anode.</td>
<td>34</td>
<td>Control Box.</td>
</tr>
<tr>
<td>5</td>
<td>Nipple Galvanized.</td>
<td>35</td>
<td>Knockout Plate.</td>
</tr>
<tr>
<td>6</td>
<td>Pipe Tee Galvanized.</td>
<td>36</td>
<td>Louver Plate.</td>
</tr>
<tr>
<td>7</td>
<td>Combination T&P Gage (optional).</td>
<td>37</td>
<td>Contactor 2 Pole.</td>
</tr>
<tr>
<td>8</td>
<td>High Pressure Switch (optional).</td>
<td>38</td>
<td>Contactor 3 Pole.</td>
</tr>
<tr>
<td>9</td>
<td>Low Pressure Switch (optional).</td>
<td>39</td>
<td>Contactor 4 Pole.</td>
</tr>
<tr>
<td>10</td>
<td>Screw.</td>
<td>40</td>
<td>Screw.</td>
</tr>
<tr>
<td>11</td>
<td>Immersion Thermostat.</td>
<td>41</td>
<td>Terminal Block “A”.</td>
</tr>
<tr>
<td>12</td>
<td>Thermostat Dial.</td>
<td>42</td>
<td>Terminal Block End “A”.</td>
</tr>
<tr>
<td>13</td>
<td>Hex Nut.</td>
<td>43</td>
<td>Terminal Block 2 Pole.</td>
</tr>
<tr>
<td>14</td>
<td>Lock Washer.</td>
<td>44</td>
<td>Terminal Block 3 Pole.</td>
</tr>
<tr>
<td>15</td>
<td>Screw.</td>
<td>45</td>
<td>Screw.</td>
</tr>
<tr>
<td>16</td>
<td>High Limit Spacer.</td>
<td>46</td>
<td>Fuse Block 2 Pole Class G.</td>
</tr>
<tr>
<td>17</td>
<td>High Limit Switch.</td>
<td>47</td>
<td>Fuse Block 3 Pole Class G.</td>
</tr>
<tr>
<td>18</td>
<td>Cleanout Access Cover.</td>
<td>48</td>
<td>Fuse Block 2 Pole Class T.</td>
</tr>
<tr>
<td>19</td>
<td>Cleanout Cover Screw.</td>
<td>49</td>
<td>Fuse Block 3 Pole Class T.</td>
</tr>
<tr>
<td>20</td>
<td>Cleanout Cover.</td>
<td>50</td>
<td>Screw.</td>
</tr>
<tr>
<td>21</td>
<td>Cleanout Gasket.</td>
<td>51</td>
<td>Terminal Strip 2 post.</td>
</tr>
<tr>
<td>22</td>
<td>Brass Drain Valve.</td>
<td>52</td>
<td>Fuse Class G.</td>
</tr>
<tr>
<td>23</td>
<td>Finish Flange.</td>
<td>53</td>
<td>Fuse Class T.</td>
</tr>
<tr>
<td>24</td>
<td>Extender.</td>
<td>54</td>
<td>Ground Lug Large.</td>
</tr>
<tr>
<td>26</td>
<td>Alarm Horn (optional).</td>
<td>56</td>
<td>Screw.</td>
</tr>
<tr>
<td>27</td>
<td>Heating Element Gasket.</td>
<td>57</td>
<td>Control Circuit Transformer.</td>
</tr>
<tr>
<td>28</td>
<td>Heating Element.</td>
<td>58</td>
<td>Control Circuit Transformer (600 Volt).</td>
</tr>
<tr>
<td>29</td>
<td>Heating Element Plug.</td>
<td>59</td>
<td>Time Delay Sequencer.</td>
</tr>
<tr>
<td>30</td>
<td>Low Water Switch (optional).</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Glossary of Terms

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
<th>Unit of measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage</td>
<td>Electrical potential</td>
<td>Volts</td>
</tr>
<tr>
<td>Current</td>
<td>Rate of voltage flow</td>
<td>Amperes (amp)</td>
</tr>
<tr>
<td>Resistance</td>
<td>Ability of a device to dissipate</td>
<td>Ohms</td>
</tr>
<tr>
<td></td>
<td>power irreversibly</td>
<td></td>
</tr>
<tr>
<td>Energy</td>
<td>Ability to do work</td>
<td>kW/hr, Joule</td>
</tr>
<tr>
<td>Power</td>
<td>Energy per unit of time</td>
<td>Watts, kW, VA</td>
</tr>
</tbody>
</table>

One kilowatt (1kW) = 1,000 Watts. = 3,412 BTU
DC = Direct Current
AC = Alternating Current
Hz = Hertz
°F = Degrees Fahrenheit
°C = Degree Centigrade

BTUH = British thermal units per hour
PSI = Pounds per square inch
GPM = Gallons per minute
GPH = Gallons per hour
ECO = Energy cut off
NPT = National pipe thread
ASME = American Society of Mechanical Engineers